THIN FILM ANALYSIS & MATERIAL SCIENCE

tec5USA Equipment Applications for Thin Film Analysis

Provide real-time insights into your process

Physical vapor deposition is a technique which a material is vaporized within a chamber and the vapor is directed at a target (i.e. substrate) onto which the material condenses. The deposited material is engineered for various purposes, from metal materials for increased environmental resistance to optical properties and even for hardness. 

Single Market Featured Image
Download Application Files

Physical Vapor Deposition Process Monitoring

The PVD process can be monitored in-situ or at-line. For in-situ monitoring, the pressure of the vapor can be monitored via either UV/Vis absorption spectroscopy or by optical emission spectroscopy. The absorption strength of the gasses can be directedly correlated to the pressure of each. With the pressure feedback from the spectrometer system, the stability of the gas can be maintained, or rapidly corrected, which then corresponds to a higher accuracy of deposition on the substrate. Optical emission spectroscopy can be employed if the vapor is created at a temperature high enough that it emits light, or glows. The spectral signature of each compound is unique, and the intensity of the light can be monitored and corresponds to the quantity of gas present in the chamber.

At-line monitoring of the deposition process can be performed using tec5USA systems via white light interference. This measurement technique provides the film thickness of deposited layers on the substrate.

Market Field Image
×

Get in Touch


    The data that is being entered might be shared with other members of the Nynomic Group. We honor any requests by an individual that we don’t share the personal data, in which case we may redirect the individual to the right company directly rather than passing on the lead. Please send an email to [email protected] in this case.

    FAQ

    Frequently Asked Questions at tec5USA

    See all FAQs

    Typical applications include white light interference for thin film analysis, UV absorption of proteins for quantitative analysis, colorimetry, impurity detection in water, cleaning validation for API manufacturing, polymerization inhibitor monitoring, electroplating bath monitoring....

    The spectroscopic methodology is determined by which parameters are important to monitor during a process. For example, if you want to monitor protein concentration in a bioreactor, in which the biosynthesis takes place in an aqueous medium, then you likely would want to use Raman spectroscopy for the application, as water does not contribute to the Raman signal. Alternatively, if moisture content is important, water has very strong absorption in the NIR due to several vibrational and combination modes that can be monitored; water is transparent in the UV and visible spectral region. Understanding which chemical is important as there could be various factors that influence the choice of methodology....

    NIR spectroscopy is utilized across a variety of industries for qualitative and quantitative product analysis. Typical industries include Chemistry, Pharmacology, Food Feed & Beverage, Agriculture, and others. NIR spectroscopy is well suited for species containing C-H, N-H & O-H bonds, making it a wide-range technology for a variety of applications such as moisture, fat, oil, alcohol, APIs, polymers, etc....

    Raman spectroscopy is a technique which is used for several markets. These industries include Oil and Gas, Pharmacology, Biotechnology, Petrochemistry and many others. Due to the high selectivity of Raman spectroscopy, it is a powerful tool for many applications including, hydrocarbon analysis, bioreactor protein monitoring, crystallization monitoring, API concentration, polymer identification, surfactant analysis, natural gas components and several others....

    Inisights

    Read the Latest Trends of the Industry

    Articles

    Revealing the Invisible: Living Cells Can Be Seen With Infrared Light

    September 20 2024

    Articles

    Revolutionary Catalyst Uses Sunlight To Turn Greenhouse Gases Into Valuable Chemicals

    September 19 2024

    News

    “Electronic Spider Silk” Sensors: Revolutionizing Bioelectronics With Eco-Friendly Technology

    May 30 2024

    News

    A Revolutionary Approach to Flu Prevention: New Molecules Stop Infection Before It Starts

    May 30 2024

    Articles

    Decoding Life’s Origins with Lost Biochemical Clues

    May 30 2024

    News

    Client Spotlight: tec5USA

    March 20 2024

    News

    tec5USA Presented at SPIE Photonics West

    February 09 2023

    News

    tec5USA Celebrated Moving to New Location

    January 25 2023

    News

    tec5USA is Moving!

    December 06 2022

    News

    The tec5USA Crew Enjoyed a Summer Soirée

    August 30 2022